Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.273
Filtrar
1.
Hum Mol Genet ; 33(9): 818-834, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38641551

RESUMO

Telomeres are nucleoprotein structures at the end of chromosomes that maintain their integrity. Mutations in genes coding for proteins involved in telomere protection and elongation produce diseases such as dyskeratosis congenita or idiopathic pulmonary fibrosis known as telomeropathies. These diseases are characterized by premature telomere shortening, increased DNA damage and oxidative stress. Genetic diagnosis of telomeropathy patients has identified mutations in the genes TERT and TERC coding for telomerase components but the functional consequences of many of these mutations still have to be experimentally demonstrated. The activity of twelve TERT and five TERC mutants, five of them identified in Spanish patients, has been analyzed. TERT and TERC mutants were expressed in VA-13 human cells that express low telomerase levels and the activity induced was analyzed. The production of reactive oxygen species, DNA oxidation and TRF2 association at telomeres, DNA damage response and cell apoptosis were determined. Most mutations presented decreased telomerase activity, as compared to wild-type TERT and TERC. In addition, the expression of several TERT and TERC mutants induced oxidative stress, DNA oxidation, DNA damage, decreased recruitment of the shelterin component TRF2 to telomeres and increased apoptosis. These observations might indicate that the increase in DNA damage and oxidative stress observed in cells from telomeropathy patients is dependent on their TERT or TERC mutations. Therefore, analysis of the effect of TERT and TERC mutations of unknown function on DNA damage and oxidative stress could be of great utility to determine the possible pathogenicity of these variants.


Assuntos
Disceratose Congênita , Telomerase , Humanos , Telomerase/genética , Telômero/genética , Telômero/metabolismo , RNA/genética , Mutação , Dano ao DNA/genética , Estresse Oxidativo/genética , Apoptose/genética , DNA/metabolismo
2.
Pathol Res Pract ; 256: 155271, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38574630

RESUMO

BACKGROUND AND OBJECTIVE: The morbidity rate of non-small cell lung cancer (NSCLC) increases with age, highlighting that NSCLC is a serious threat to human health. The aim of this study was mainly to describe the role of exosomal miR-101-3p derived from bone marrow mesenchymal stem cells (BMSCs) in NSCLC. METHODS: A549 or NCI-H1703 cells (1×105/mouse) were injected into nude mice to establish an NSCLC animal model. RTqPCR, Western blotting and comet assays were used to assess the changes in gene expression, proteins and DNA damage repair. RESULTS: miR-101-3p and RAI2 were found to be expressed at low levels in NSCLC, while EZH2 was highly expressed. In terms of function, miR-101-3p downregulated EZH2. In addition, exosomal miR-101-3p derived from BMSCs promoted the expression of RAI2, inhibited DNA damage repair, and inhibited the activation of the PI3K/AKT/mTOR signaling pathway by inhibiting EZH2, thereby promoting autophagy and decreasing cell viability and finally enhancing the sensitivity of NSCLC to radiotherapy and inhibiting the malignant biological behavior of NSCLC. CONCLUSION: Exosomal miR-101-3p derived from BMSCs can inhibit DNA damage repair, promote autophagy, enhance the radiosensitivity of NSCLC, and inhibit the progression of NSCLC by inhibiting EZH2.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Exossomos , Neoplasias Pulmonares , Células-Tronco Mesenquimais , MicroRNAs , Humanos , Camundongos , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/patologia , MicroRNAs/metabolismo , Exossomos/genética , Exossomos/metabolismo , Camundongos Nus , Fosfatidilinositol 3-Quinases/metabolismo , Autofagia/genética , Células-Tronco Mesenquimais/metabolismo , Tolerância a Radiação , Dano ao DNA/genética , Proliferação de Células , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo
3.
Nat Aging ; 4(4): 510-526, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38632351

RESUMO

DNA damage contributes to the aging of hematopoietic stem cells (HSCs), yet the underlying molecular mechanisms are not fully understood. In this study, we identified a heterogeneous functional role of microcephalin (MCPH1) in the nucleus and cytoplasm of mouse HSCs. In the nucleus, MCPH1 maintains genomic stability, whereas in the cytoplasm, it prevents necroptosis by binding with p-RIPK3. Aging triggers MCPH1 translocation from cytosol to nucleus, reducing its cytoplasmic retention and leading to the activation of necroptosis and deterioration of HSC function. Mechanistically, we found that KAT7-mediated lysine acetylation within the NLS motif of MCPH1 in response to DNA damage facilitates its nuclear translocation. Targeted mutation of these lysines inhibits MCPH1 translocation and, consequently, compromises necroptosis. The dysfunction of necroptosis signaling, in turn, improves the function of aged HSCs. In summary, our findings demonstrate that DNA damage-induced redistribution of MCPH1 promotes HSC aging and could have broader implications for aging and aging-related diseases.


Assuntos
Dano ao DNA , Necroptose , Camundongos , Animais , Dano ao DNA/genética , Instabilidade Genômica , Translocação Genética , Envelhecimento/genética , Células-Tronco Hematopoéticas/fisiologia
4.
Cell Syst ; 15(4): 305-306, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38636456

RESUMO

The cellular DNA damage response pathway can have vastly different outcomes depending on the source of its activation. Justice and colleagues apply phosphoproteomics to uncover a divergence in DNA-PK and ATM kinase activities in the contexts of DNA damage and DNA virus infection.


Assuntos
Infecções por Vírus de DNA , Transdução de Sinais , Humanos , Transdução de Sinais/genética , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Dano ao DNA/genética , Reparo do DNA/genética
5.
BMC Cancer ; 24(1): 415, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575974

RESUMO

BACKGROUND: Genome stability is maintained by the DNA damage repair (DDR) system composed of multiple DNA repair pathways of hundreds of genes. Germline pathogenic variation (PV) in DDR genes damages function of the affected DDR genes, leading to genome instability and high risk of diseases, in particular, cancer. Knowing evolutionary origin of the PVs in human DDR genes is essential to understand the etiology of human diseases. However, answer to the issue remains largely elusive. In this study, we analyzed evolutionary origin for the PVs in human DDR genes. METHODS: We identified 169 DDR genes by referring to various databases and identified PVs in the DDR genes of modern humans from ClinVar database. We performed a phylogenetic analysis to analyze the conservation of human DDR PVs in 100 vertebrates through cross-species genomic data comparison using the phyloFit program of the PHAST package and visualized the results using the GraphPad Prism software and the ggplot module. We identified DDR PVs from over 5000 ancient humans developed a database to host the DDR PVs ( https://genemutation.fhs.um.edu.mo/dbDDR-AncientHumans ). Using the PV data, we performed a molecular archeological analysis to compare the DDR PVs between modern humans and ancient humans. We analyzed evolution selection of DDR genes across 20 vertebrates using the CodeML in PAML for phylogenetic analysis. RESULTS: Our phylogenic analysis ruled out cross-species conservation as the origin of human DDR PVs. Our archeological approach identified rich DDR PVs shared between modern and ancient humans, which were mostly dated within the last 5000 years. We also observed similar pattern of quantitative PV distribution between modern and ancient humans. We further detected a set of ATM, BRCA2 and CHEK2 PVs shared between human and Neanderthals. CONCLUSIONS: Our study reveals that human DDR PVs mostly arose in recent human history. We propose that human high cancer risk caused by DDR PVs can be a by-product of human evolution.


Assuntos
Reparo do DNA , Neoplasias , Humanos , Filogenia , Reparo do DNA/genética , Genes BRCA2 , Neoplasias/genética , Instabilidade Genômica , Dano ao DNA/genética , Predisposição Genética para Doença
6.
Environ Mol Mutagen ; 65 Suppl 1: 4-8, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38619433

RESUMO

This Special Issue (SI) of Environmental and Molecular Mutagenesis (EMM), entitled "Inspiring Basic and Applied Research in Genome Integrity Mechanisms," is to update the community on recent findings and advances on genome integrity mechanisms with emphasis on their importance for basic and environmental health sciences. This SI includes two research articles, one brief research communication, and four reviews that highlight cutting edge research findings and perspectives, from both established leaders and junior trainees, on DNA repair mechanisms. In particular, the authors provided an updated understanding on several distinct enzymes (e.g., DNA polymerase beta, DNA polymerase theta, DNA glycosylase NEIL2) and the associated molecular mechanisms in base excision repair, nucleotide excision repair, and microhomology-mediated end joining of double-strand breaks. In addition, genome-wide sequencing analysis or site-specific mutational signature analysis of DNA lesions from environmental mutagens (e.g., UV light and aflatoxin) provide further characterization and sequence context impact of DNA damage and mutations. This SI is dedicated to the legacy of Dr. Samuel H. Wilson from the U.S. National Institute of Environmental Health Sciences at the National Institutes of Health.


Assuntos
Aniversários e Eventos Especiais , Reparo do DNA , Reparo do DNA/genética , Dano ao DNA/genética , DNA/genética , Mutação , Reparo do DNA por Junção de Extremidades
7.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 110-115, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38650147

RESUMO

DNA damage response (DDR) plays a vital role in the development of cancer. Nevertheless, in osteosarcoma, the potential of DDR-related genes (DDRGs) remains unclear. Thus, the current research is intended to investigate the mechanisms of DDRGs in the development of osteosarcoma and to explore potential DDR-related biomarkers in forecasting the prognosis of osteosarcoma patients. The osteosarcoma genomic data from TCGA, GEO and cBioPortal databases were utilized for screening and identification of differentially expressed DDRGs (DEDDRGs). Consensus clustering analysis was performed to identify different subtypes of osteosarcoma based on the expressions of DDRGs. Key DEDRRGs were identified by overlapping DEDRRGs between different subtypes and DEDRRGs between tumor and control samples. Univariate, as well as LASSO regressions, were further applied to obtain robust prognostic signatures. GSVA and ssGSEA analysis were implemented to explore the underlying mechanisms of prognostic DDRG signature in regulating osteosarcoma. In addition, the drug sensitivity of patients in low- and high-risk groups was evaluated using pRRophetic algorithm. A total of 43 key DEDRRGs were identified. Followed by univariate Cox along with LASSO regression analyses, CDK6, CSF1R, EGFR, ERBB4, GATA3 and SOCS1 were identified as prognostic signatures in osteosarcoma. Cox regressions revealed that the risk score was an independent prognostic factor in osteosarcoma.  DDR may affect osteosarcoma via regulating immune microenvironment along with influencing cell proliferation, migration, adhesion and apoptosis. The chemotherapeutic response between patients in low- and high-risk groups was much different. The role of DDRGs in osteosarcoma and identified six DDR-linked biomarkers for forecasting the prognosis of osteosarcoma patients. Our outcomes enhanced the understanding of DDR-related molecular mechanisms involved in osteosarcoma and provided potential therapeutic targets for osteosarcoma patients.


Assuntos
Neoplasias Ósseas , Dano ao DNA , Regulação Neoplásica da Expressão Gênica , Osteossarcoma , Osteossarcoma/genética , Osteossarcoma/patologia , Humanos , Prognóstico , Dano ao DNA/genética , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Neoplasias Ósseas/mortalidade , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Perfilação da Expressão Gênica , Feminino , Reparo do DNA/genética
8.
Int J Biol Sci ; 20(6): 2008-2026, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617548

RESUMO

Renal aging may lead to fibrosis and dysfunction, yet underlying mechanisms remain unclear. We explored whether deficiency of the Polycomb protein Bmi1 causes renal aging via DNA damage response (DDR) activation, inducing renal tubular epithelial cell (RTEC) senescence and epithelial-mesenchymal transition (EMT). Bmi1 knockout mice exhibited oxidative stress, DDR activation, RTEC senescence, senescence-associated secretory phenotype (SASP), and age-related fibrosis in kidneys. Bmi1 deficiency impaired renal structure and function, increasing serum creatinine/urea, reducing creatinine clearance, and decreasing cortical thickness and glomerular number. However, knockout of the serine-threonine kinase Chk2 alleviated these aging phenotypes. Transcriptomics identified transforming growth factor beta 1 (TGFß1) upregulation in Bmi1-deficient RTECs, but TGFß1 was downregulated upon Chk2 knockout. The tumor suppressor protein p53 transcriptionally activated TGFß1, promoting EMT in RTECs. Bmi1 knockout or oxidative stress (induced with H2O2) increased TGFß1 expression, and EMT in RTECs and was partly reversed by p53 inhibition. Together, Bmi1 deficiency causes oxidative stress and DDR-mediated RTEC senescence/SASP, thus activating p53 and TGFß1 to induce EMT and age-related fibrosis. However, blocking DDR (via Chk2 knockout) or p53 ameliorates these changes. Our study reveals mechanisms whereby Bmi1 preserves renal structure and function during aging by suppressing DDR and p53/TGFß1-mediated EMT. These pathways represent potential targets for detecting and attenuating age-related renal decline.


Assuntos
Peróxido de Hidrogênio , Proteína Supressora de Tumor p53 , Animais , Camundongos , Envelhecimento , Creatinina , Dano ao DNA/genética , Transição Epitelial-Mesenquimal/genética , Rim , Estresse Oxidativo/genética , Complexo Repressor Polycomb 1/genética , Proteínas Proto-Oncogênicas/genética , Proteína Supressora de Tumor p53/genética
9.
PLoS Biol ; 22(3): e3002540, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38466718

RESUMO

DNA methylation plays central roles in diverse cellular processes, ranging from error-correction during replication to regulation of bacterial defense mechanisms. Nevertheless, certain aberrant methylation modifications can have lethal consequences. The mechanisms by which bacteria detect and respond to such damage remain incompletely understood. Here, we discover a highly conserved but previously uncharacterized transcription factor (Cada2), which orchestrates a methylation-dependent adaptive response in Caulobacter. This response operates independently of the SOS response, governs the expression of genes crucial for direct repair, and is essential for surviving methylation-induced damage. Our molecular investigation of Cada2 reveals a cysteine methylation-dependent posttranslational modification (PTM) and mode of action distinct from its Escherichia coli counterpart, a trait conserved across all bacteria harboring a Cada2-like homolog instead. Extending across the bacterial kingdom, our findings support the notion of divergence and coevolution of adaptive response transcription factors and their corresponding sequence-specific DNA motifs. Despite this diversity, the ubiquitous prevalence of adaptive response regulators underscores the significance of a transcriptional switch, mediated by methylation PTM, in driving a specific and essential bacterial DNA damage response.


Assuntos
Bactérias , Metilação de DNA , Prevalência , Bactérias/genética , Metilação de DNA/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Reparo do DNA , Processamento de Proteína Pós-Traducional , Dano ao DNA/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , DNA Bacteriano/metabolismo
10.
Trends Genet ; 40(4): 299-312, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38519330

RESUMO

Recent studies of aging organisms have identified a systematic phenomenon, characterized by a negative correlation between gene length and their expression in various cell types, species, and diseases. We term this phenomenon gene-length-dependent transcription decline (GLTD) and suggest that it may represent a bottleneck in the transcription machinery and thereby significantly contribute to aging as an etiological factor. We review potential links between GLTD and key aging processes such as DNA damage and explore their potential in identifying disease modification targets. Notably, in Alzheimer's disease, GLTD spotlights extremely long synaptic genes at chromosomal fragile sites (CFSs) and their vulnerability to postmitotic DNA damage. We suggest that GLTD is an integral element of biological aging.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/genética , Dano ao DNA/genética
11.
Int J Mol Sci ; 25(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38338943

RESUMO

An apical component of the cell cycle checkpoint and DNA damage repair response is the ataxia-telangiectasia mutated (ATM) Ser/Thr protein kinase. A variant of ATM, Ser49Cys (rs1800054; minor allele frequency = 0.011), has been associated with an elevated risk of melanoma development; however, the functional consequence of this variant is not defined. ATM-dependent signalling in response to DNA damage has been assessed in a panel of patient-derived lymphoblastoid lines and primary human melanocytic cell strains heterozygous for the ATM Ser49Cys variant allele. The ATM Ser49Cys allele appears functional for acute p53-dependent signalling in response to DNA damage. Expression of the variant allele did reduce the efficacy of oncogene expression in inducing senescence. These findings demonstrate that the ATM 146C>G Ser49Cys allele has little discernible effect on the acute response to DNA damage but has reduced function observed in the chronic response to oncogene over-expression. Analysis of melanoma, naevus and skin colour genomics and GWAS analyses have demonstrated no association of this variant with any of these outcomes. The modest loss of function detected suggest that the variant may act as a modifier of other variants of ATM/p53-dependent signalling.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia , Melanoma , Humanos , Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Ciclo Celular/metabolismo , Dano ao DNA/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Melanoma/genética , Oncogenes , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/genética
12.
Mol Cell ; 84(7): 1377-1391.e6, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38423013

RESUMO

Micronuclei (MN) are induced by various genotoxic stressors and amass nuclear- and cytoplasmic-resident proteins, priming the cell for MN-driven signaling cascades. Here, we measured the proteome of micronuclear, cytoplasmic, and nuclear fractions from human cells exposed to a panel of six genotoxins, comprehensively profiling their MN protein landscape. We find that MN assemble a proteome distinct from both surrounding cytoplasm and parental nuclei, depleted of spliceosome and DNA damage repair components while enriched for a subset of the replisome. We show that the depletion of splicing machinery within transcriptionally active MN contributes to intra-MN DNA damage, a known precursor to chromothripsis. The presence of transcription machinery in MN is stress-dependent, causing a contextual induction of MN DNA damage through spliceosome deficiency. This dataset represents a unique resource detailing the global proteome of MN, guiding mechanistic studies of MN generation and MN-associated outcomes of genotoxic stress.


Assuntos
Cromotripsia , Proteoma , Humanos , Proteoma/genética , Proteoma/metabolismo , Proteômica , Núcleo Celular/genética , Núcleo Celular/metabolismo , Dano ao DNA/genética
13.
Development ; 151(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38415794

RESUMO

Polyploid cells contain multiple genome copies and arise in many animal tissues as a regulated part of development. However, polyploid cells can also arise due to cell division failure, DNA damage or tissue damage. Although polyploidization is crucial for the integrity and function of many tissues, the cellular and tissue-wide consequences of polyploidy can be very diverse. Nonetheless, many polyploid cell types and tissues share a remarkable similarity in function, providing important information about the possible contribution of polyploidy to cell and tissue function. Here, we review studies on polyploid cells in development, underlining parallel functions between different polyploid cell types, as well as differences between developmentally-programmed and stress-induced polyploidy.


Assuntos
Dano ao DNA , Poliploidia , Animais , Divisão Celular , Dano ao DNA/genética
15.
Methods Cell Biol ; 182: 67-81, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38359988

RESUMO

Multiple DNA repair pathways and biological responses to DNA damage have evolved to protect cells from various types of lesions to which they are subjected. Although DNA repair systems are mechanistically distinct, all process the damaged region and then insert new bases to fill the gap. In 1969, Robert Painter developed an assay called "unscheduled" DNA synthesis (UDS), which measures DNA repair synthesis as the uptake of radiolabeled DNA precursors distinct from replicative synthesis. Contemporary detection of nascent DNA during repair by next-generation sequencing grants genome-wide information about the nature of lesions that threaten genome integrity. Recently, we developed the SAR-seq (synthesis associated with repair sequencing) method, which provides a high-resolution view of UDS. SAR-seq has been utilized to map programmed DNA repair sites in non-dividing neurons, replication initiation zones, monitor 53BP1 function in countering end-resection, and to identify regions of the genome that fail to complete replication during S phase but utilize repair synthesis during mitosis (MiDAS). As an example of SAR-seq, we present data showing that sites replicated during mitosis correspond to common fragile sites, which have been linked to tumor progression, cellular senescence, and aging.


Assuntos
Reparo do DNA , DNA , Reparo do DNA/genética , DNA/genética , DNA/metabolismo , Dano ao DNA/genética , Replicação do DNA/genética , Análise de Sequência de DNA
16.
PLoS Genet ; 20(2): e1011158, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38359090

RESUMO

Elucidating gene function is a major goal in biology, especially among non-model organisms. However, doing so is complicated by the fact that molecular conservation does not always mirror functional conservation, and that complex relationships among genes are responsible for encoding pathways and higher-order biological processes. Co-expression, a promising approach for predicting gene function, relies on the general principal that genes with similar expression patterns across multiple conditions will likely be involved in the same biological process. For Cryptococcus neoformans, a prevalent human fungal pathogen greatly diverged from model yeasts, approximately 60% of the predicted genes in the genome lack functional annotations. Here, we leveraged a large amount of publicly available transcriptomic data to generate a C. neoformans Co-Expression Network (CryptoCEN), successfully recapitulating known protein networks, predicting gene function, and enabling insights into the principles influencing co-expression. With 100% predictive accuracy, we used CryptoCEN to identify 13 new DNA damage response genes, underscoring the utility of guilt-by-association for determining gene function. Overall, co-expression is a powerful tool for uncovering gene function, and decreases the experimental tests needed to identify functions for currently under-annotated genes.


Assuntos
Criptococose , Cryptococcus neoformans , Humanos , Cryptococcus neoformans/genética , Criptococose/genética , Criptococose/microbiologia , Reparo do DNA/genética , Fenótipo , Dano ao DNA/genética , Proteínas Fúngicas/genética
17.
Methods ; 224: 47-53, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387709

RESUMO

Nucleotide excision repair (NER) promotes genomic integrity by removing bulky DNA adducts introduced by external factors such as ultraviolet light. Defects in NER enzymes are associated with pathological conditions such as Xeroderma Pigmentosum, trichothiodystrophy, and Cockayne syndrome. A critical step in NER is the binding of the Xeroderma Pigmentosum group A protein (XPA) to the ss/ds DNA junction. To better capture the dynamics of XPA interactions with DNA during NER we have utilized the fluorescence enhancement through non-canonical amino acids (FEncAA) approach. 4-azido-L-phenylalanine (4AZP or pAzF) was incorporated at Arg-158 in human XPA and conjugated to Cy3 using strain-promoted azide-alkyne cycloaddition. The resulting fluorescent XPA protein (XPACy3) shows no loss in DNA binding activity and generates a robust change in fluorescence upon binding to DNA. Here we describe methods to generate XPACy3 and detail in vitro experimental conditions required to stably maintain the protein during biochemical and biophysical studies.


Assuntos
Dano ao DNA , Reparo do DNA , Humanos , Reparo do DNA/genética , Dano ao DNA/genética , 60562 , Proteína de Xeroderma Pigmentoso Grupo A/genética , Proteína de Xeroderma Pigmentoso Grupo A/química , Proteína de Xeroderma Pigmentoso Grupo A/metabolismo , DNA/química , Raios Ultravioleta , Nucleotídeos , Ligação Proteica
18.
Mol Biol Rep ; 51(1): 308, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38366290

RESUMO

The DNA damage response (DDR) is a crucial cellular signaling pathway activated in response to DNA damage, including damage caused by chemotherapy. Chemoresistance, which refers to the resistance of cancer cells to the effects of chemotherapy, poses a significant challenge in cancer treatment. Understanding the relationship between DDR and chemoresistance is vital for devising strategies to overcome this resistance and improve treatment outcomes. Long non-coding RNAs (lncRNAs) are a class of RNA molecules that do not code for proteins but play important roles in various biological processes, including cancer development and chemoresistance. RNA-binding proteins (RBPs) are a group of proteins that bind to RNA molecules and regulate their functions. The interaction between lncRNAs and RBPs has been found to regulate gene expression at the post-transcriptional level, thereby influencing various cellular processes, including DDR signaling pathways. Multiple studies have demonstrated that lncRNAs can interact with RBPs to modulate the expression of genes involved in cancer chemoresistance by impacting DDR signaling pathways. Conversely, RBPs can regulate the expression and function of lncRNAs involved in DDR. Exploring these interactions can provide valuable insights for the development of innovative therapeutic approaches to overcome chemoresistance in cancer patients. This review article aims to summarize recent research on the interaction between lncRNAs and RBPs during cancer chemotherapy, with a specific focus on DDR pathways.


Assuntos
Neoplasias , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Dano ao DNA/genética , Reparo do DNA/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
19.
Free Radic Biol Med ; 213: 470-487, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38301978

RESUMO

The NTHL1 and NEIL1-3 DNA glycosylases are major enzymes in the removal of oxidative DNA base lesions, via the base excision repair (BER) pathway. It is expected that lack of these DNA glycosylases activities would render cells vulnerable to oxidative stress, promoting cell death. Intriguingly, we found that single, double, triple, and quadruple DNA glycosylase knockout HAP1 cells are, however, more resistant to oxidative stress caused by genotoxic agents than wild type cells. Furthermore, glutathione depletion in NEIL deficient cells further enhances resistance to cell death induced via apoptosis and ferroptosis. Finally, we observed higher basal level of glutathione and differential expression of NRF2-regulated genes associated with glutathione homeostasis in the NEIL triple KO cells. We propose that lack of NEIL DNA glycosylases causes aberrant transcription and subsequent errors in protein synthesis. This leads to increased endoplasmic reticulum stress and proteotoxic stress. To counteract the elevated intracellular stress, an adaptive response mediated by increased glutathione basal levels, rises in these cells. This study reveals an unforeseen role of NEIL glycosylases in regulation of resistance to oxidative stress, suggesting that modulation of NEIL glycosylase activities is a potential approach to improve the efficacy of e.g. anti-inflammatory therapies.


Assuntos
DNA Glicosilases , Reparo do DNA , Reparo do DNA/genética , DNA Glicosilases/genética , DNA Glicosilases/metabolismo , Estresse Oxidativo/genética , Dano ao DNA/genética , Apoptose/genética
20.
Comput Biol Med ; 171: 108107, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38412692

RESUMO

OBJECTIVES: The role of long non-coding RNAs (lncRNAs) in cancer treatment, particularly in modulating DNA repair programs, is an emerging field that warrants systematic exploration. This study aimed to systematically identify the lncRNA regulators that potentially regulate DNA damage response (DDR). METHODS: Using genome-wide mRNA and lncRNA expression profiles of the same tumor patients, we proposed a novel computational framework. This framework performed Gene Set Variation Analysis to calculate DDR pathway enrichment score, which relies on weighting by tumor purity to obtain DDR activity score for each patient. Then, an in-depth differential expression profiling was conducted to identify pathway activity lncRNAs between high- and low-activity groups, utilizing a bootstrap-based randomization method. RESULTS: We comprehensively charted the landscape of DDR-relevant lncRNAs across 23 epithelial-based cancer types. Its effectiveness was validated by assessing the consistency of these lncRNAs within various datasets of the same cancer type (hypergeometric test P < 0.001), examining the expression perturbation of these lncRNAs in response to treatment and demonstrating its application in prioritizing clinically-related lncRNAs. Furthermore, leveraging 820 epithelial ovarian cancer patients from four public datasets, we applied these lncRNAs identified by DDRLnc to establish and validate a risk stratification model to evaluate the benefits of platinum-based adjuvant chemotherapy for the improvement of clinical treatment outcomes. CONCLUSIONS: Comprehensive pan-cancer analysis illustrates the utility of computational framework in identifying potentially lncRNAs involved in DDR, thereby offering novel insights into the complex realm of cancer research, and it will become a valuable tool for identifying potential therapeutic targets for cancer.


Assuntos
Neoplasias , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias/tratamento farmacológico , Neoplasias/genética , Dano ao DNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...